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Path integration of a two-time quadratic action 

D C Khandekart, S V Lawandet and K V Bhagwate 
Bhabha Atomic Research Centre, Bombay 400 085, India 

Received 23 May 1983 

Abstract. Path integration of a general two-time quadratic action characterising memory 
effects is performed within the framework of Feynman’s polygonal path approach. Explicit 
evaluation of the propogator in exact analytical form is further carried out for the specific 
kernel used by Feynman in the polaron problem. 

1. Introduction 

In his path integral theory for polarons, Feynman (1955) introduced for the first time 
a non-local quadratic action of the form 

S [ x ( t ) ]  = $m I,’ x2 dt - dt  ds  G ( t ,  s) ( (  x( t )  - x( 3))’ (1.1) 

where G(t ,  s) is (without loss of generality) a symmetric function of t and s. As a 
simple way of characterising memory effects, this action has, since then, been used in 
many physical problems. Apart from its use by a number of authors in the polaron 
problem (Feynman 1955, Krivoglaz and Pekar 1957, Osaka 1958, Hellwarth and 
Platzman 1962, Thornber 1971, Sa Yakanit 1979), this action was also considered by 
Bezak (1970) for treating an electron gas in a random potential. It has also been 
exploited in the calculation of the density of electronic states in disordered systems 
(Edwards and Guylayev 1964, Samathiyakanit 1974, Gross 1977, Sa Yakanit 1979) 
and in discussing the propagation of waves in random media (Chow 1972, Dashen 
1979). 

Most of the above applications use either a simple form of the memory kernel (e.g. 
G(s, t )  =constant, Bezak 1970) or an approximate solution of the classical equation 
of motion. An exact propagator for action (1.1) using Bezak’s kernel was first obtained 
by Papadopoulos (1974) and subsequently by others (Maheshwari 1975, Khandekar 
et a1 1981, Dhara et a1 1982) employing different techniques of path integration. 
Explicit evaluation of the propagator for an arbitrary kernel G(s, t )  has received 
attention only very recently (Adamowski and Gerlach 1982, Dhara et a1 1982). 

In this paper, we carry out the path integration of the general action (1.1) within 
the framework of Feynman’s polygonal approach (Feynman and Hibbs 1965) and in 
the spirit of some of our previous work (Khandekar and Lawande 1975, 1979). We 
obtain an exact analytical form for the propagator which has the form of a free particle 
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propagator with an ‘effective mass’ apart from the normalisation factor. We show that 
both the exponent and normalisation factor are related to the solutions of certain 
integrodifferential equations. 

We present in § 2 the derivation of the propagator. The formulation developed in 
9 2 is subsequently applied in § 3 to obtain explicitly an exact propagator for a specific 
form of the kernel G(s,  t ) .  Section 4 summarises the essential results. 

2. Derivation of the propagator 

2.1. Basic formulation 

In the Feynman path-integral formulation of quantum mechanics, the propagator is 
defined as 

x ( T ) = x  

x ( O ) = x o  
K(x, T ;  X(J, 0) = 5 exd(i/h)S[x( t)1)9[x( 01 (2.1) 

where the symbol 9[x( t ) ]  implies that integrations are performed over all possible 
paths from x(0) = xo to x( T )  = x. Now, using the polygonal paths approach (Feynman 
and Hibbs 1965), we write equation (2.1) as 

K(x, T ;  x,), 0) = lim K,(x, T ;  xO, 0) ( 2 . 2 ~ )  
N - x  

with K, defined by 
x N - I  

-X  --cc , = I  
KN = AN . . . n dx, exp[(i/h)SN]. (2.2b) 

Here S ,  is the discretised form of the action defined over the partition of the time 
interval [0, T ]  into N subintervals each of length E. Thus x, = x(t,), XO = x(O), XN = x 
and f, - rl-l = T /  N. A N  is the usual normalisation factor 

A,,, = ( m / 2 r r i h ~ ) ~ / * .  (2.3) 

The discretised form of the action of (1.1) reads 

and K,v takes the form 

.v/2 5 =(:) exp[-a(xi +xL) ]  d X  exd-a[(X, PX)-2(X, Y)]}. (2.5) 

Here P is an (N-  1)-dimensional square matrix with the following structure 

P,] = PI,, 

PI.,+, = 2g, ,+,  - 1, 

P,] = 2( 1 + g,, - Q:) 9 

pi, = 2g1, 

(2.6) 

( i  # j ,  j * 1) 
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where 

and X and Y, are column vectors having ( N -  1) components: 

Y =  (,I 
X N  

4211 

(2.7) 

and a = ( m / 2 i h ~ ) .  The symbols d X  =U:;' dx,. The gaussian integral in (2.5) may be 
easily evaluated employing the general formula 

L13 

exp[-(X, A X ) + a  (X, Y)] d X  I_, 
= (.r"-'/det(A))''2 exp[aa2( Y, A-'Y)] (2.9) 

(2.10) 

and we arrive at 

K N  = ( a /  T det(P))'" exp{a[( Y, P-' Y) - x i  - xfj]}. 

It is now clear that the explicit form of the propagator is obtained if we are able to 
obtain the exponent 

(2.11) p =  a [ (  Y, P- 'Y)-  x: -x&]  

and the normalisation factor 

q=(a /Tde t (P ) ) l ' z  

in the limit E + 0, N-* 00 with NE= T. 

2.2. Exponent p 

We introduce a new vector U such that 

P U =  Y. 

Written in component form (2.13) reads 

2( 1 + g, - fi:, U, + (%,.,+I - 1) U]+' 

(2.12) 

(2.13) 

(2.14) 

with the endpoint values defined as 

The next step involves converting the difference equation (2.14) into a differential 
form by going over to the E + O  limit. For this purpose, we substitute in (2.14) the 
explicit expressions (2.7) for g,, and Cl;, divide throughout by E' and take the limit as 
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E + 0. The resulting integrodifferential equation is given by 
l- 

imii + lo G( t, s)( U( t )  - U( s)) d s  = 0, 
( U  =$) (2.16) 

along with the end-point conditions 

u ( 0 )  = xo, U( T )  = x,. (2.17) 

Note that (2.16) is just the classical equation of motion obtained by varying S[x(t)] 
in (1.1). Next on integrating (2.16) over the time interval [0, TI we obtain 

U(0) = Li( T ) .  (2.18) 

Further, the general solution of (2.16), satisfying the condition (2.17), has the form 

u ( t ) = c + [ ( X N - X " ) / ( U N - U O ) l U ( f )  (2 .19a)  

(2.19 b )  

and u ( t )  is a non-constant solution of (2.16). We now use these results for evaluating 
the exponent p. Employing equations (2.8) and (2.13) we have 

( Y , P - ' Y ) = ( Y ,  U)=x($4I+XNu, - ]  

= xg[ U( 0) + &U (0) + O( E 2 ) ]  + x,[ U( T )  - &U( T )  + O( E * ) ]  

= x i  +xz, + & [ x " L i ( 0 ) - x , U ( T ) ] + O ~ E 2 ) .  (2.20) 

Making use of equations (2.18)-(2.20) we obtain 

l imp = ( im/2h)[(x-x, , ) ' / (u(~)-  u(o))]~(T). (2.21) 
F ' O  

The expression on the right is just equal to  (i/h)Sc,, S,, being the action computed 
along the classical path from xg to x. 

2.3. Normalisation factor q 

The first step in obtaining the normalisation factor is to decompose the matrix P as 

P = L +  v 
where L and V are ( N -  1)-dimensional square matrices. This decomposition is not 
unique. One may choose L and V in any manner provided L-' exists. In particular, 
one may choose L = I (unit matrix). For subsequent discussion we choose L and V 
such that 

L,, = L,,, L,./+l = -1, L,, = 2( 1 - cl;, , L,, = 0 ( i  f i, i* 11, 
(2.22) 

VI, = 2g,, = v,,, (2.23) 

with the decomposition 

det(P)  = (de t (L) (de t ( l+L- '  V)). (2.24) 
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2.3.1. Evaluation of der ( I  + L-I V ) .  We now proceed to obtain an explicit expression 
for de t ( l+  L-I V )  by employing as a general result 

de t ( l -AK)=exp(+IAodp T r R ( p ) ) ,  (2 .25)  

where K is a finite-dimensional square matrix and the matrix R ( p )  satisfies the equation 

R ( p )  = K +pKR. (2 .26)  

In our case A = -1, K = L-' V and it is more convenient to set up an equation for 
d = R/E 

d = E - l ~ - l ~ + p ~ - l ~ i  
i.e. 

L i = s - ' V + p v d .  (2.27)  

Employing equations (2.22) and (2 .23)  we can express (2.27) in the component form: 

( 2 - 2fi: 61. k - 1- 1, k - d I +  1 , k  

(2 .28)  

subject to the conditions - * 
R o k  = R N k  = o  Vk. (2.29) 

Next, substituting in equation (2.28) the expressions (2 .7)  for 0, and g,,, rearranging 
and dividing throughout by we take the limit E + 0. Equation (2.28) then goes over 
to the following integrodifferential form 

a m ( d 2 / d t 2 ) d ( t ,  s)+r(t)k(t ,  s) = G(t ,  s)+p  

with 

G(t ,  t")d(t", s) dt", (2 .30)  

(2.31) 

(2 .32)  

Now according to equation (2.25) 

det ( l+  L-' V )  = exp d p  Tr R ( p ) )  = exp( d p  ~ d , )  
] = I  

and hence 

2.3.2. Evaluation of det(L). From the definition of the matrix L in (2 .22) ,  it is easy 
to see that Ak,  the kth minor of det(L), satisfies the recursion relation 

Ak =2(1-f i ; )Ak-l-Ak-2,  k a  1 ,  (2 .34)  
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with 
A,= 1, A-,  = 0. (2.35) 

Writing (Lk+l= EAk one immediately obtains from (2.34) and (2.35) the equations 

$k+ 1 - 2(Lk + (Lk - 1 + 2.Q 2 (Lk = 0, 

*, = 0, = E.  

k a 2 ,  

Dividing throughout by E‘ and taking the limit E + 0 one arrives at the differential 
equation 

(2.36) am& + r(t)+ = 0 
with the initial conditions 

(L(0) = 0, 440) = 1, (2.37) 

The solution of the differential equation (2.36) satisfying the initial conditions 

* ( t )  =[7)(t)5(0)-5(t)7)(0)l/d (2.38) 

and r(t)  defined as in (2.32). 

(2.37) reads 

where 5 and 7) are two linearly independent solutions of (2.36) and 

d=[7j(0)5(0)-~(0)7)(0)1. (2.39) 

Finally, since det(L) = A N - ,  = ( L N / &  we arrive at the result 

Qz = pz ( E  det(L)) = [ ~ ( T ) 5 ( 0 ) - 5 (  T ) ~ ( o ) / d .  

Employing equations (2.12), (2.33) and (2.40) we then obtain 

lim q = lim (m/27rih)”’(~ det(l))-1”2(det(l+L-’V))-1’2 
E + O  E ’ O  

= (m/27riiiQ1Q2)”*, 

where Q1 and Q2 are as in equations (2.33) and (2.40) respectively. 

(2.40) 

(2.41) 

2.4.  The propagator 

According to (2.2a), (2.10)-(2.12), and (2.41), the required propagator has the closed 
analytical form 

(2.42) 

where Ql and Q2 are defined in (2.33) and (2.40) while Sc1 is the action evaluated 
along the classical path: 

(2.43) 

Note that the propagator has a form similar to that for a free particle with ‘effective mass’ 

(2.44) 

while the normalisation factor contains an additional term (m* Q1 Q2/ mT)-1’2 apart 
from the free particle normalisation factor (m*/27~ihT)”’. Further, noting that m* = 
T(C32S,l/~x~xo) one finds that the propagator of (2.42) is essentially given by the 

K ( x ,  T ;  xo,O) = ( m / 2 ~ r i h Q , Q ~ ) ” ~  exp((i/h)S,J 

SCI =$mx( T ) ( x  - x,) =4m(x - xJ2rj( T ) / (  u (  T )  - u ( 0 ) ) .  

m* = mTrj( T ) / (  u(  T )  - u ( 0 ) )  
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Van-Vleck-Pauli formula 

C, [ ( 2 7~ ih ) - ’ I a* sC,/ ax ax, I ]  ’ * ex p[ ( i/ h] S,,] (2.45) 

apart from the correction factor C, = ( m*Q1 Qz/mT)-”*.  
Explicit evaluation of the propagator depends upon the knowledge of the kernel 

G(s, t )  and whether or not the basic equations (2.16), (2.30) and (2.36) yield analytical 
solutions for a given G(s, t ) .  Nevertheless our general formulation opens the door 
for trying out a variety of kernels G( s, t )  depending on the physical problem considered. 
In 9 3 we apply our method to treat a kernel G(s, I )  which incidentally has been 
employed by Feynman in the polaron problem. 

3. Explicit evaluation for a particular kernel 

We now apply the theory developed in 0 2 to obtain, in an exact closed form, the 
propagator for the case when the kernel G(t ,  s) has the form 

G( t ,  s) = $mS1*w2d( t, s) (3.1) 

It will be useful to consider some of the properties of r$( t ,  s). Firstly 4(  t ,  s) is symmetric 
in t and s and is normalised such that 

loT d(i, s)ds = 1/w2. (3.3) 

Secondly, d ( t ,  s) satisfies the differential equation 

(D2+ u2)4( t, S )  = S (  t - s),  D = a/&. (3.4) 

Thirdly 4( t ,  s) and its derivative with respect to t ,  D4(t, s), obey the end-point 
conditions 

4(0, s) = 4(  T, s) = c o s [ u ( t ~ - s ) ] / 2 w  sin(4wT) 

D4(0 ,  s) = D4(  T, s) = -w  sin[w(tT-s)]/2w sin(4wT). (3.5) 

Lastly, we have the following easily proved identity 

loT d ( &  s)f(s)  ds 

= (p’-w*)-’[-f(t) + Dd(0, t ) ( f (  T )  -f (0)) 

where f ( t )  is a solution of the differential equation 

(D2 + p’)f( t )  = 0. (3.7) 
The evaluation of the propagator proceeds in three stages. We first consider the 
exponent which requires the solution of (2.16). This equation now takes the form 

(D2+CL*)u=CLu2 d ( t ,  S ) U ( S )  ds. (3.8) i,: 
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Applying the operator (D2+w2) on both sides and employing the property (3.41, we 
arrive at the ordinary differential equation 

(D2+ v2)D2u = O  

whose solution is readily obtained as 

U = F +  u ( t )  (3.9) 
where 

v = ( R 2 + , 2 ) ” 2 ,  u ( t )  = A sin( v t )  + B cos( v t )  + Cr (3.10) 

where A, B, C and F are constants. The idea is to use the non-constant part of the 
solution, namely U(?), and determine the coefficients A, B and C so that U(?) also 
satisfies the original equation (3.8). Substituting u ( t )  from (3.10) in (3.8) and using 
the property (3.6) to evaluate the right-hand side we obtain two consistency conditions: 

(3.11) 

(3.12) 

A(  1 -cos( vt)) + B sin( vt) = 0, 

A w 2  sin( v t )  - w’B( 1 -cos( u t ) )  + C n 2 T  = 0. 

These conditions then determine A and C in terms of B. As a result we obtain 

cos( v( T -  f)]-COS( v t )  2w’t 
cos( vT) - 1 +-I n 2 T  

u ( t )  = B (3.13) 

as the required non-constant solution of (3.8). Using this solution we obtain the 
quantities tj( T ) ,  u ( 0 )  and U( T )  required to compute S,, of equation (2.43). Thus 

s,, = t ( m ~ ‘ /  v 2 ) [ ( w 2 / n 2 ~ ) + $ v  c o t ( + v ~ ) ] ( x - x , ~ ’ .  (3.14) 

Next, we consider the evaluation of the normalisation factor. The part corresponding 
to det(L) involves the solution of (2.36) which for the present case reads as 

d2t+ft/dt’+R2$=0, *(O) = 0, i ( 0 )  = 1. (3.15) 

Two linearly independent solutions of equation (3.15) are 

l(  t )  = sin Rt, 7 ( t )  = COS at. 
Hence the part of the normalisation factor, namely Qz of (2.40), is obtained as 

(3.16) 

QZ = sin(nt) /R.  (3.17) 

Lastly, we consider the part QI of the normalisation factor corresponding to d e t ( l +  
C ’ V ) .  For this purpose we consider equations (2.30), (2.31) which take the form 

(D2+R2)6(t ,  s)=R2w’4(t ,  s)+p,Un2w’ 4(f, r)d(r, s) dr, 

(3.18) 

We try to arrive at the solution of this equation in the same manner as that employed 
earlier for equation (3.8). Operating on both sides of (3.18) by (D2+w2)  and using 
the property (3.41, we obtain the linear differential equation 

( D * + R : ) ( D ~ + R ~ , ) ~ ( ~ ,  S) =nzw2s(t-s), (3.19) 

i,: 
6 ( 0, s ) = d ( T, s ) = 0. 

(3.20) 
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The solution of (3.19) is then given by 

R( t, s) = [n2w*/(nz,  - n*l)][l?l( t, s) - E,( t, s)], 

where d, ( j = 1,2)  are the solutions of the equation 

(D2+n?)E,( t, S) = 6( t - s),  

(3.21) 

(3.22) 

along with the conditions 

i A 0 ,  s) = R 2 @ ,  s), E,(  T, s) = E*( T, s). (3.23) 

The next step involves substitution of d(t, s) of (3.21) into the integrodifferential 
eguation (3.18) and determining the boundary conditions satisfied by &(t, s) so that 
R(t ,  s) is indeed a solution of (3.18). This can be carried out by making use of the 
identity 

(3.24) 

where 

e; = n;- w 2 ,  (3.25) 

A,= b(0, s)[DR,(T, r)-DA,(O, r)I-D4(0, s)[R,(T, r ) - E , ( O ,  r)l (3.26) 

for simplifying the right-hand side of (3.18). After some algebra, one obtains the 
additional boundary conditions to be imposed on E,(t ,  s). These are 

E,(O, s) = E,( T, s), (3.27) 

e:[Dk,( T, S) - DRl(0, s)] = 6: [DRz(T, S) - D&(O, s)]. (3.28) 

Next, the general solution d,, j = 1,2 ,  equation (3.22) satisfying the condition (3.27) 
has the form 

(3.29) E,(t, s) =P,(t, s)+ax,(t, s) 

where 
sin(R,t) sin[n,( T -  s)]  

P,( t, s) = - t s s ,  
R, sin(n,T) ’ 

sin(Q,s) sin[a,(T- t)] 
0, sin(R,T) 

sin(n,t) + sin[R,( T - t)] 
sin(n,T) 

=-  t Z S ,  

x, = 

(3.30) 

(3.21) 

(3.32) 

Now, applying the second condition we determine the remaining constant a: 

a =;(e:X2(s)- e : x l ( s ) ) l ( e : f * -  G f l ) ,  (3.33) 

f ,  = n,[cos(n,T) - l]/sin(RjT). (3.34) 

where 

Hence the complete solution of (3.18) for d(t, s) reads as 
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[oTP,(f . t )dt)=i  Tcos(R,T) 1 

With the help (3.35)-(3.37), the expression for Tr E takes the form 

Tr 6 ( p )  = i ( t ,  t, p )  dt 
InT  

(3.36) 

(3.37) 

(3.38) 

We have now to evaluate the quantity 
to make a transformation from p to A, 

d p  Tr ( p ) .  For this purpose, it is convenient 

so that 

cot[ T(A1- A ) ’ ” ]  - cot[ T(Al +A)’”‘] 
( A l - A ) l 1 2  ( A ,  + ln d p  Tr a ( p )  =f dA( -1 

The integration over A is easily performed yielding the result 

Inserting in (3.41) the explicit values 

(3.40) 

(3.41) 

(3.42) 
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we obtain 
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(3.43) 

Hence, the normalisation factor Q1 is given by 

= [ w 2 / ( w 2  + R2)](R T/sin R T){sin2[iT(R2 + w2)1’2]/~in2($oT)}. (3.44) 

Combining the results of (2.42), (3.14), (3.17) and (3.44) we arrive at the exact 
analytical form of the propagator 

K(x, T ;  XO, 0) 

= ( m /  2 r i h  T ) ” ~ (  sin( ;UT)/ w ) ( v/sin(t vT)) 

where 

Y = (,2+w2)1’2, (3.45) 

A particular case of our kernel is obtained by taking the limit as w +- 0. In this case 

G(t ,  s )  = : m a 2 .  

which is precisely the kernel used by Bezak and since then has been the subject of 
several applications. Taking the limit of the expression (3.46) as w + 0 we obtain the 
propagator for this case 

1’2 R T  
Ko(x, T;  xo, 0) = - ( 2 2 , )  2 sin(@T) 

T)) (x  - X O ) ~ I  (3.46) 

which agrees with the result of Papadopoulos (1974) and others (Maheshwari 1975, 
Khandekar et a1 1981, Dhara et a1 1982). If we let R+O we recover from (3.45) the 
usual free particle propagator. Finally, if we use imaginary time T = -ihp in equation 
(3 .43 ,  the resulting expression agrees with the recent result of Adamowski and Gerlach 
(1982). 

4. Summary 

The main contribution of this paper is the explicit evaluation of the propagator for 
the general non-local (two-time) action (1.1) within the polygonal path approach of 
Feynman. Our derivation emphasises that both the exponent and the normalisation 
factor in the propagator are determined once the solutions of certain integrodifferential 
equations are obtained. We have illustrated our technique for a known kernel G(s, t ) .  
However, the general results derived in this paper imply the possibility of using in 
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physical applications new kernels G(s, t )  for which the above equations have analytical 
solutions. Further, in many physical applications it may also be necessary to evaluate 
the propagator when the action contains an additional time-dependent force term. 
The analysis of this paper can be readily extended to cover this case too. 
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